超聲微泡作為納米醫(yī)學,在醫(yī)學領域的診斷和***方面具有多方面的優(yōu)勢,目前,超聲微泡已發(fā)展為多模態(tài)造影劑、光熱劑和***劑。市面上有各種商用mb造影劑,如Levovist、Definity、option、Sonazoid和Sonovue,具有不同的特性、成分和尺寸變化,范圍在1-8μm。例如,Levovist(基于空氣填充的半乳糖/棕櫚酸mb)可以通過減少噪聲信號來改善超聲成像,而SonoVue(基于六氟化硫填充的脂質mb)在外周血中高度穩(wěn)定。在臨床前和臨床階段的診斷中,超聲微泡作為造影劑與成像儀器相結合,輔助疾病的可視化和表征。這種成像過程被稱為分子成像(MI),因為它可以在動物和人類的分子和細胞水平上進行觀察。由于MI的非侵入性,它的應用具有附加價值,它為組織表型的檢測和評估以及早期疾病提供了實時可視化。更重要的是,MI還可用于分析細胞相互作用和監(jiān)測***遞送情況。為了獲得有利的結果,MI需要兩個組成部分,即成像儀器和納米藥物。理想情況下,使用的儀器必須是非侵入性的,并且具有高分辨率和靈敏度的能力,可以檢測和監(jiān)測成像劑。載藥超聲微泡造影劑另一種選擇是通過賦予超聲微泡生物啟發(fā)策略其中天然細胞膜可以用作構建超聲微泡的材料。海南超聲微泡惰性氣體
將靶向成像方式與病變定向***相結合,可以確定與積極***反應可能性有關的幾個生物學相關事實。特別令人感興趣的問題是,目標是否存在,藥物是否達到目標,以及預期目標是否真的是正在***的目標。有多種有趣的生物過程適合應用靶向超聲成像來監(jiān)測藥物遞送的療效。我們的研究小組描述了一種對比增強超聲技術,將破壞-補充超聲與亞諧波相位反轉成像相結合,以提高空間分辨率,并區(qū)分對比回波和非蘇回波。在非破壞性成像脈沖期間,聲音以指定頻率從換能器傳輸,而接收函數則被檢測到原頻率的次諧波頻率。次諧波振蕩是由超聲造影劑而不是周圍組織***產生的,導致血管內造影劑產生大量的次諧波回聲,而周圍組織幾乎沒有信號。生成了血流速度和整體綜合強度的定量參數圖,并且與金標準技術相比,灌注測量更有利。該技術用于監(jiān)測用抗血管生成藥物***的實驗性**的反應,并確定對***的不同反應水平。制備超聲微泡小動物多年來,脂溶藥物已被納入運載工具,以避免全身毒性。
微泡空化時細胞膜和血管通透性的變化。電子顯微鏡已經證明,在細胞膜內產生的小孔與微泡的崩潰和射流的產生有關。根據超聲參數,細胞膜內產生的孔隙可能是短暫的,導致細胞死亡或成功地將外源物質引入細胞質。除了改變細胞膜通透性外,將超聲應用于含有微泡的小血管還能改變血管壁的通透性,導致顆粒外滲到間隙。這種***通透性的變化取決于泡的大小、殼的組成以及***直徑與泡直徑的比值。改變超聲參數,如聲壓和脈沖間隔,以及物理參數,如注射部位和微血管壓力,可以比較大限度地提高微球的局部藥物遞送。在超聲中心頻率為1MHz的情況下,0.75MPa的壓力足以在體外大鼠肌肉微循環(huán)中產生***破裂。超聲脈沖間隔既影響觀察到外滲的點數,也影響輸送的物質體積,兩者在脈沖間隔為5s時均達到比較大值。人們認為,要使輸送的物質體積比較大化,需要將微泡補充到脈沖之間的區(qū)域。研究還表明,隨著***血壓的升高,微泡通過***壁的運輸也會增加。
納米微泡比超聲微泡具有更好的被動瞄準能力,因為納米微泡的尺寸小于1μm;因此,它們可以通過EPR效應滲透到血管壁并積聚在斑塊內。超聲微泡中使用的原料或外殼配方會影響表面電荷性質,同時顆粒大小決定了超聲微泡在體內的分布。超聲微泡的分布特性影響成像診斷的成功及其通過被動和主動靶向給藥的有效性“被動靶向”一詞指的是增強的per-merabilityretention(EPR)效應,該效應驅動無特異性靶向的裸超聲微泡到達病變目標。然而,裸超聲微泡通常在靜脈注射后10分鐘內被吞噬進入網狀上皮系統(tǒng)(RES)與***中的內皮功能障礙相關,內膜微血管滲漏可以作為針對***斑塊的藥物遞送的被動靶向途徑。因此,納米微泡比超聲微泡具有更好的被動瞄準能力,因為納米微泡的尺寸小于1μm;因此,它們可以通過EPR效應滲透到血管壁并積聚在斑塊內然而,納米微泡的缺點是無法獲得高質量的超聲成像因為小尺寸的氣泡會降低聲響應制備成像用納米微泡的策略之一是調整和修改納米微泡的殼體組成,以增加其回波性由于EPR效應與尺寸有關,研究人員在制造100-200nm左右的小尺寸納米微泡方面存在困難目前的研究表明,與小于50nm和大于300nm的顆粒相比,100-200nm之間的顆粒尺寸在病變部位的蓄積更大。 超聲微泡有效地產生反向散射超聲,增強對比度,以便將目標部位(血管)與周圍組織區(qū)分開來。
微泡表面的加載也可以通過配體-受體相互作用來實現。例如,Lum等人**近報道了一項研究,其中納米顆粒通過生物素-親和素連鎖結合到外殼上。固體聚苯乙烯納米顆粒作為模型系統(tǒng),可以用可生物降解的材料代替裝載藥物或基因的納米顆粒?;蛘撸浖{米顆粒,如脂質體,已成功加載到微泡。這些結果提出了一種模塊化的加載方法,即首先將***性化合物加載到納米顆粒室中,然后將其加載到微泡載體上。這種方法提供了一個多功能平臺,可以根據特定***劑的疏水性、大小和釋放要求進行定制?!爸鲃影邢颉币辉~指的是用特定生物標志物標記的超聲微泡,允許它們被驅動到特定的目標。北京全氟丙烷超聲微泡
超聲微泡造影劑成像的優(yōu)勢在于其獨特的多路復用方法和快速的過程。海南超聲微泡惰性氣體
超聲微泡造影劑在******中應用。***的**早指標之一是單核細胞與內皮細胞的***和附著。這是由白細胞粘附分子(lam)如細胞間粘附分子-1(ICAM-1)的上調介導的。1997年,用于常規(guī)心肌超聲造影的帶有白蛋白殼的超聲造影劑在某些病理條件下通過心肌的轉運時間較慢。在體外實驗中,這些微泡優(yōu)先粘附在表達lam的內皮細胞上。隨后,含有針對ICAM-1的單克隆抗體的超聲造影劑在體外和體內均顯示出良好的結合效率。Villanueva等人和其他人描述了使用微泡對炎癥進行主動靶向,其中在炎癥反應期間***的內皮細胞使用微泡進行靶向。Takalkar等人使用平行板流室來測定抗icam-1靶向的微泡對白細胞介素-1人工***的內皮細胞的粘附性。增加了40倍與非靶向對照相比,靶向微泡發(fā)生了微泡粘附。微泡以高達100s-1的剪切速率粘附,這是較大小靜脈的特征。其他白細胞粘附分子在炎癥和缺血-再灌注損傷中上調。特別有趣的是p-選擇素,它已被超聲造影劑靶向炎癥小鼠模型。Rychak等人**近證明了可變形微泡與p-選擇素的靶向粘附。海南超聲微泡惰性氣體