作為工業(yè)領域的一種關鍵旋轉設備,對于終端用來說,關于電機維護的主要是電氣班組的設備工程師、電機維護工程師、電機檢修人員等;對于電機廠家以及電機經銷商來說,主要是電機售后服務工程師、電機銷售人員,會涉及到電機的運行維護;險此之外,還有第三方檢修人員等。目前已經有很多智能產品號稱可以實現(xiàn)電機的預測性維護,但問題也非常多。1)傳感器安裝難。設備狀態(tài)監(jiān)測需要振動、噪聲、溫度傳感器,通訊協(xié)議并不統(tǒng)一,自成體系,安裝、使用、維護成本高昂。2)技術成本高。工業(yè)場景設備類型多,運行工況復雜,預測性維護算法涉及數(shù)據預處理、工業(yè)機理、機器學習,技術要求很高。3)時間成本高。預測性維護要實現(xiàn),前期需要大量歷史數(shù)據的支撐,數(shù)據采集、歸納、分析是一個漫長的過程。電機智能運維,雖然被各大宣傳媒體提得很多,但還遠遠未到落地很好乃至普及的程度,不論是預測性維護的預測效果,還是電機的智能運維的市場推廣以及市場接受程度,對于電機運維來說,都還有很遠的一段距離!基于人工智能算法的新型的電機故障預測系統(tǒng),適用范圍廣,能在更多的工業(yè)場合應用。寧波減振監(jiān)測方案
隨著科技發(fā)展, 各類工程設備的工作和運行環(huán)境變得越來越復雜. 作為機械設備的關鍵零部件, 滾動軸承在長期大載荷、強沖擊等復雜工況下, 極易產生各種故障, 導致機械工作狀況惡化. 針對軸承的故障預測與健康管理技術應運而生. 若能在故障發(fā)生初期即進行準確、可靠的檢測和診斷, 則有助于進行及時維修, 避免嚴重事故的發(fā)生. 早期故障檢測已成為PHM的關鍵技術環(huán)節(jié)之一. 近年來, 隨著傳感技術和機器學習技術的快速發(fā)展, 數(shù)據驅動的智能化故障檢測和診斷技術受到關注. 如何利用歷史采集的狀態(tài)監(jiān)控數(shù)據、提高目標軸承早期故障檢測結果的準確性和穩(wěn)定性成為研究熱點和難點, 具有明確的學術價值和應用需求.本文關注的是不停機情況下的早期故障在線檢測問題. 這種方式有助于實時評估軸承工作狀態(tài), 避免因等待停機檢查而產生延誤、造成經濟損失, 因此對早期故障的在線檢測越來越受到工業(yè)界的重視。杭州專業(yè)監(jiān)測系統(tǒng)供應商時間域、頻率域以及角度域的NVH分析方法,對汽車動力總成的各種故障進行實時識別、監(jiān)測和診斷。
基于交流電機的特征量:通過故障機理分析可知,交流電機運行過程中,其故障與否必然表現(xiàn)為一些特征參量的變化,根據診斷需要,選擇有代表性的特征參量為該設備在線監(jiān)測的被測信號,準確地提取這些故障特征量,這是故障診斷的關鍵。故障特征量,特別是反映早期故障征兆的信號往往比較弱,而相應的背景噪聲比較弱,常規(guī)的監(jiān)測方法,因受傳感器的準確性、微處理器的速度、A/D轉換的分辨率與轉換速度等硬件條件的限制,以及一般的數(shù)據處理方式的不足,很難滿足提取這些特征量的要求,需要采用一些特殊的電工測量手段與信號處理方法。例如小波變換原理的應用。電機故障的現(xiàn)代分析方法:基于信號變換的診斷方法電機設備的許多故障信息是以調制的形式存在于所監(jiān)測的電氣信號及振動信號之中,如果借助于某種變換對這些信號進行解調處理,就能方便地獲得故障特征信息,以確定電機設備所發(fā)生的故障類型。常用的信號變換方法有希爾伯特變換和小波變換等。
作為工業(yè)領域的一種關鍵旋轉設備,對于終端用來說,關于電機維護的主要是電氣班組設備工程師、電機維護工程師、電機檢修人員等;對于電機廠家以及電機經銷商來說,主要是電機售后服務工程師、電機銷售人員,會涉及到電機的運行維護;險此之外,還有第三方檢修人員等。目前已經有很多智能產品號稱可以實現(xiàn)電機的預測性維護,但問題也非常多。1)傳感器安裝難。設備狀態(tài)監(jiān)測需要振動、噪聲、溫度傳感器,通訊協(xié)議并不統(tǒng)一,自成體系,安裝、使用、維護成本高昂。2)技術成本高。工業(yè)場景設備類型多,運行工況復雜,預測性維護算法涉及數(shù)據預處理、工業(yè)機理、機器學習,技術要求很高。3)時間成本高。預測性維護要實現(xiàn),前期需要大量歷史數(shù)據的支撐,數(shù)據采集、歸納、分析是一個漫長的過程。的電機智能運維,雖然被各大宣傳媒體提得很多,但還遠遠未到落地很好乃至普及的程度,不論是預測性維護的預測效果,還是電機的智能運維的市場推廣以及市場接受程度,對于電機運維來說,都還有很遠的一段距離!盈蓓德科技可以提供故障預判準確率高,更經濟更可靠的旋轉設備健康狀態(tài)監(jiān)測方案。
作為工業(yè)領域的一種關鍵旋轉設備,對于終端用來說,關于電機維護的主要是電氣班組的設備工程師、電機維護工程師、電機檢修人員等;對于電機廠家以及電機經銷商來說,主要是電機售后服務工程師、電機銷售人員,會涉及到電機的運行維護;險此之外,還有第三方檢修人員等。目前已經有很多智能產品號稱可以實現(xiàn)電機的預測性維護,但問題也非常多。1)傳感器安裝難。設備狀態(tài)監(jiān)測需要振動、噪聲、溫度傳感器,通訊協(xié)議并不統(tǒng)一,自成體系,安裝、使用、維護成本高昂。2)技術成本高。工業(yè)場景設備類型多,運行工況復雜,預測性維護算法涉及數(shù)據預處理、工業(yè)機理、機器學習,技術要求很高。3)時間成本高。預測性維護要實現(xiàn),前期需要大量歷史數(shù)據支撐,數(shù)據采集、歸納、分析是一個漫長的過程。的電機智能運維,雖然被各大宣傳媒體提得很多,但還遠遠未到落地很好乃至普及的程度,不論是預測性維護的預測效果,還是電機的智能運維的市場推廣以及市場接受程度,對于電機運維來說,都還有很遠的一段距離!電機狀態(tài)監(jiān)測和故障診斷技術可以了解和掌握電機使用過程中的狀態(tài),確定其整體或局部正?;虍惓?。南通性能監(jiān)測技術
電機監(jiān)測系統(tǒng)幫助識別處于初期階段的旋轉類設備的機械和液壓故障,從而制定更為合理的輔助維護計劃。寧波減振監(jiān)測方案
故障預測與健康管理是以工業(yè)監(jiān)測數(shù)據為基礎,通過高等數(shù)學、數(shù)學優(yōu)化、統(tǒng)計概率、信號處理、機器學習和統(tǒng)計學習等技術搭建模型算法,實現(xiàn)產品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預測,為產品和裝備的正常運行保駕護航,從而提高其安全性、可靠性。故障預測與健康管理是以工業(yè)監(jiān)測數(shù)據為基礎,通過高等數(shù)學、數(shù)學優(yōu)化、統(tǒng)計概率、信號處理、機器學習和統(tǒng)計學習等技術搭建模型算法,實現(xiàn)產品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預測,為產品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。近年來我們提出的標準化平方包絡和數(shù)學框架以及準算數(shù)均值比數(shù)學框架指引了稀疏測度構造的新方向,同時發(fā)現(xiàn)了大量與基尼指數(shù)、峭度、香農熵等具有等價性能的稀疏測度?;跇藴驶椒桨j和數(shù)學框架以及凸優(yōu)化技術,提出了在線更新模型權重可解釋的機器學習算法,可以利用模型權重來實時確認故障特征頻率,解決了狀態(tài)監(jiān)測與故障診斷領域傳統(tǒng)機器學習只能輸出狀態(tài),而無法提供故障特征來確認輸出狀態(tài)的難題。寧波減振監(jiān)測方案