作為工業(yè)領(lǐng)域的一種關(guān)鍵旋轉(zhuǎn)設(shè)備,對(duì)于終端用來說,關(guān)于電機(jī)維護(hù)的主要是電氣班組的設(shè)備工程師、電機(jī)維護(hù)工程師、檢修人員等;對(duì)于電機(jī)廠家以及電機(jī)經(jīng)銷商來說,主要是電機(jī)售后服務(wù)工程師、電機(jī)銷售人員,會(huì)涉及到電機(jī)的運(yùn)行維護(hù);險(xiǎn)此之外,還有第三方檢修人員等。目前已經(jīng)有很多智能產(chǎn)品號(hào)稱可以實(shí)現(xiàn)電機(jī)的預(yù)測(cè)性維護(hù),但問題也非常多。1)傳感器安裝難。設(shè)備狀態(tài)監(jiān)測(cè)需要振動(dòng)、噪聲、溫度傳感器,通訊協(xié)議并不統(tǒng)一,自成體系,安裝、使用、維護(hù)成本高昂。2)技術(shù)成本高。工業(yè)場(chǎng)景設(shè)備類型多,運(yùn)行工況復(fù)雜,預(yù)測(cè)性維護(hù)算法涉及數(shù)據(jù)預(yù)處理、工業(yè)機(jī)理、機(jī)器學(xué)習(xí),技術(shù)要求很高。3)時(shí)間成本高。預(yù)測(cè)性維護(hù)要實(shí)現(xiàn),前期需要大量歷史數(shù)據(jù)的支撐,數(shù)據(jù)采集、歸納、分析是一個(gè)漫長(zhǎng)的過程。電機(jī)智能運(yùn)維,雖然被各大宣傳媒體提得很多,但還遠(yuǎn)遠(yuǎn)未到落地很好乃至普及的程度,不論是預(yù)測(cè)性維護(hù)的預(yù)測(cè)效果,還是電機(jī)的智能運(yùn)維的市場(chǎng)推廣以及市場(chǎng)接受程度,對(duì)于電機(jī)運(yùn)維來說,都還有很遠(yuǎn)的一段距離!通過監(jiān)測(cè)刀具的振動(dòng)頻率和振幅,可以評(píng)估切削過程中的穩(wěn)定性和刀具的健康狀態(tài)。南通穩(wěn)定監(jiān)測(cè)系統(tǒng)供應(yīng)商
電機(jī)狀態(tài)監(jiān)測(cè)和振動(dòng)分析提供加速度計(jì)選擇的建議?;谥绷骱头峭浇涣麟姍C(jī)的常見故障。這些常見故障可通過振動(dòng)分析檢測(cè)出來,包括機(jī)械和電氣故障。重點(diǎn)是傳感器的頻率范圍及其安裝方法,以便可靠地檢測(cè)這些故障。例如,考慮以幾百赫茲的周期性頻率(稱為故障頻率)發(fā)生的撞擊事件,但每個(gè)事件的能量可從起始點(diǎn)帶走,頻率在低至千赫范圍內(nèi)。因此,用于檢測(cè)撞擊、摩擦和凹槽等事件的傳感器應(yīng)在幾百赫茲到20千赫的寬頻范圍內(nèi)響應(yīng)。對(duì)于傳統(tǒng)的機(jī)械故障,如平衡和對(duì)準(zhǔn),頻率范圍從約0.2倍的運(yùn)行速度到50-60倍的運(yùn)行速度是足夠的。電氣故障需要機(jī)械故障所需的低頻和高頻段。電機(jī)會(huì)同時(shí)出現(xiàn)機(jī)械和電氣故障,這會(huì)導(dǎo)致振動(dòng)。只要安裝的振動(dòng)傳感器具有足夠的帶寬和靈敏度,就可以檢測(cè)到這些故障。機(jī)械故障伴隨著沖擊、摩擦和疲勞,會(huì)產(chǎn)生比電氣故障頻率更劇烈的振動(dòng),但凹槽除外。凹槽產(chǎn)生的振動(dòng)頻率與摩擦頻率大致相同。如果傳感器的帶寬和安裝方法足以檢測(cè)機(jī)械故障,那么它們也將檢測(cè)電氣故障。南京性能監(jiān)測(cè)特點(diǎn)電機(jī)監(jiān)測(cè)系統(tǒng)產(chǎn)生大量的數(shù)據(jù),包括振動(dòng)數(shù)據(jù)、電流數(shù)據(jù)等。有效地處理和分析這些大量數(shù)據(jù)是一項(xiàng)挑戰(zhàn)。
為了確保試驗(yàn)的可靠性和可比性,汽車傳動(dòng)系統(tǒng)疲勞驗(yàn)證需要遵循一定的標(biāo)準(zhǔn)和規(guī)范。不同國(guó)家和地區(qū)可能有不同的標(biāo)準(zhǔn),常見的標(biāo)準(zhǔn)包括ISO16750-3、SAEJ816、GB/T12600和ASTME1823等。這些標(biāo)準(zhǔn)用于規(guī)定汽車電子系統(tǒng)的環(huán)境試驗(yàn)、汽車變速器的疲勞壽命試驗(yàn)方法和標(biāo)準(zhǔn)、金屬材料的疲勞性能等。通過遵循這些標(biāo)準(zhǔn)和規(guī)范進(jìn)行汽車傳動(dòng)系統(tǒng)疲勞驗(yàn)證,可以確保測(cè)試結(jié)果的可靠性和準(zhǔn)確性,從而提高產(chǎn)品的質(zhì)量和安全性。
β-star智能監(jiān)診系統(tǒng)是一種測(cè)量系統(tǒng),用于在動(dòng)態(tài)條件下對(duì)汽車傳動(dòng)系統(tǒng)(如變速箱,車橋,傳動(dòng)軸以及發(fā)動(dòng)機(jī))進(jìn)行早期損壞檢測(cè)。通過將當(dāng)前的振動(dòng)指標(biāo)與先前“學(xué)習(xí)階段”參考值進(jìn)行比較,它可以探測(cè)出傳動(dòng)系統(tǒng)內(nèi)部部件的相關(guān)變化。該系統(tǒng)將幫助產(chǎn)品開發(fā)工程師在傳動(dòng)系統(tǒng)內(nèi)部部件失效之前檢測(cè)出“原始”缺陷。
電機(jī)狀態(tài)監(jiān)測(cè)和故障診斷技術(shù)是一種了解和掌握電機(jī)在使用過程中狀態(tài),確定其整體或局部正常或異常,早期發(fā)現(xiàn)故障及其原因,并能預(yù)報(bào)故障發(fā)展趨勢(shì)的技術(shù),電機(jī)狀態(tài)監(jiān)測(cè)與故障診斷技術(shù)包括識(shí)別電機(jī)狀態(tài)監(jiān)測(cè)和預(yù)測(cè)發(fā)展趨勢(shì)兩方面。設(shè)備狀態(tài)是指設(shè)備運(yùn)行的工況,由設(shè)備運(yùn)行過程中的各種性能參數(shù)以及設(shè)備運(yùn)行過程中產(chǎn)生的二次效應(yīng)參數(shù)和產(chǎn)品質(zhì)量指標(biāo)參數(shù)來描述。設(shè)備狀態(tài)的類型包括:正常、異常和故障三種。設(shè)備狀態(tài)監(jiān)測(cè)是通過測(cè)定以上參數(shù),并進(jìn)行分析處理,根據(jù)分析處理結(jié)果判定設(shè)備狀態(tài)。對(duì)設(shè)備進(jìn)行定期或連續(xù)監(jiān)測(cè),包括采用各種測(cè)試、分析判別方法,結(jié)合設(shè)備的歷史狀況和運(yùn)行條件,弄清設(shè)備的客觀狀態(tài),獲取設(shè)備性能發(fā)展的趨勢(shì)規(guī)律,為設(shè)備的性能評(píng)價(jià)、合理使用、安全運(yùn)行、故障診斷及設(shè)備自動(dòng)控制打下基礎(chǔ)。電機(jī)故障現(xiàn)代分析方法:基于信號(hào)變換的診斷方法電機(jī)設(shè)備的許多故障信息是以調(diào)制的形式存在于所監(jiān)測(cè)的電氣信號(hào)及振動(dòng)信號(hào)之中,如果借助于某種變換對(duì)這些信號(hào)進(jìn)行解調(diào)處理,就能方便地獲得故障特征信息,以確定電機(jī)設(shè)備所發(fā)生的故障類型。常用的信號(hào)變換方法有希爾伯特變換和小波變換。使用絕緣監(jiān)測(cè)設(shè)備來檢測(cè)電機(jī)繞組和絕緣系統(tǒng)的健康狀況。絕緣降低可能導(dǎo)致繞組短路或絕緣擊穿。
基于數(shù)據(jù)的故障檢測(cè)與診斷方法能夠?qū)A康墓I(yè)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析和特征提取,將系統(tǒng)的狀態(tài)分為正常運(yùn)行狀態(tài)和故障狀態(tài)。故障檢測(cè)是判斷系統(tǒng)是否處于預(yù)期的正常運(yùn)行狀態(tài),判斷系統(tǒng)是否發(fā)生異常故障,相當(dāng)于一個(gè)二分類任務(wù)。故障診斷是在確定發(fā)生故障的時(shí)候判斷系統(tǒng)處于哪一種故障狀態(tài),相當(dāng)于一個(gè)多分類任務(wù)。因此,故障檢測(cè)和診斷技術(shù)的研究類似于模式識(shí)別,分為4個(gè)的步驟:數(shù)據(jù)獲取、特征提取、特征選擇和特征分類。1)數(shù)據(jù)獲取步驟是從過程系統(tǒng)收集可能影響過程狀態(tài)的信號(hào),包括溫度、流量等過程變量;2)特征提取步驟是將采集的原始信號(hào)映射為有辨識(shí)度的狀態(tài)信息;3)特征選擇步驟是將與狀態(tài)變化相關(guān)的變量提取出來;4)特征分類步驟是通過算法將前幾步中選擇的特征進(jìn)行故障檢測(cè)與診斷。在大數(shù)據(jù)這一背景下,傳統(tǒng)的基于數(shù)據(jù)的故障檢測(cè)與診斷方法被廣泛應(yīng)用,但是,這些方法有一些共同的缺點(diǎn):特征提取需要大量的知識(shí)和信號(hào)處理技術(shù),并且對(duì)于不同的任務(wù),沒有統(tǒng)一的程序來完成。此外,常規(guī)的基于機(jī)器學(xué)習(xí)的方法結(jié)構(gòu)較淺,在提取信號(hào)的高維非線性關(guān)系方面能力有限。使用數(shù)據(jù)分析和機(jī)器學(xué)習(xí)算法來處理多傳感器數(shù)據(jù),建立模型以監(jiān)測(cè)和預(yù)測(cè)刀具的壽命和健康狀況。寧波動(dòng)力設(shè)備監(jiān)測(cè)應(yīng)用
設(shè)備狀態(tài)監(jiān)測(cè)技術(shù)是一種用于實(shí)時(shí)或定期檢測(cè)和評(píng)估設(shè)備運(yùn)行狀況的技術(shù)。南通穩(wěn)定監(jiān)測(cè)系統(tǒng)供應(yīng)商
基于數(shù)據(jù)的故障檢測(cè)與診斷方法能夠?qū)A抗I(yè)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析和特征提取,將系統(tǒng)的狀態(tài)分為正常運(yùn)行狀態(tài)和故障狀態(tài),可視為模式識(shí)別任務(wù)。故障檢測(cè)是判斷系統(tǒng)是否處于預(yù)期的正常運(yùn)行狀態(tài),判斷系統(tǒng)是否發(fā)生異常故障,相當(dāng)于一個(gè)二分類任務(wù)。故障診斷是在確定發(fā)生故障的時(shí)候判斷系統(tǒng)處于哪一種故障狀態(tài),相當(dāng)于一個(gè)多分類任務(wù)。因此,故障檢測(cè)和診斷技術(shù)的研究類似于模式識(shí)別,分為4個(gè)的步驟:數(shù)據(jù)獲取、特征提取、特征選擇和特征分類。1)數(shù)據(jù)獲取步驟是從過程系統(tǒng)收集可能影響過程狀態(tài)的信號(hào),包括溫度、流量等過程變量;2)特征提取步驟是將采集的原始信號(hào)映射為有辨識(shí)度的狀態(tài)信息;3)特征選擇步驟是將與狀態(tài)變化相關(guān)的變量提取出來;4)特征分類步驟是通過算法將前幾步中選擇的特征進(jìn)行故障檢測(cè)與診斷。在大數(shù)據(jù)這一背景下,傳統(tǒng)的基于數(shù)據(jù)的故障檢測(cè)與診斷方法被廣泛應(yīng)用,但是,這些方法有一些共同的缺點(diǎn):特征提取需要大量的知識(shí)和信號(hào)處理技術(shù),并且對(duì)于不同的任務(wù),沒有統(tǒng)一的程序來完成。此外,常規(guī)基于機(jī)器學(xué)習(xí)的方法結(jié)構(gòu)較淺,在提取信號(hào)的高維非線性關(guān)系方面能力有限。南通穩(wěn)定監(jiān)測(cè)系統(tǒng)供應(yīng)商