傳統(tǒng)方法通常無法自適應(yīng)提取特征, 同時(shí)需要一定離線數(shù)據(jù)訓(xùn)練得到檢測模型, 但目標(biāo)對(duì)象在線場景下采集到的數(shù)據(jù)有限, 且其數(shù)據(jù)分布與訓(xùn)練數(shù)據(jù)的分布可能因隨機(jī)噪聲、變工況等原因而存在差異, 導(dǎo)致離線訓(xùn)練的模型并不完全適合于在線數(shù)據(jù), 容易降低檢測結(jié)果的準(zhǔn)確性; 其次, 上述方法通常采用基于異常點(diǎn)的檢測算法, 未充分考慮樣本前后的時(shí)序關(guān)系, 容易因數(shù)據(jù)微小波動(dòng)而產(chǎn)生誤報(bào)警, 降低檢測結(jié)果的魯棒性; 再次, 為降低誤報(bào)警, 這類方法需要反復(fù)調(diào)整報(bào)警閾值. 此外, 基于系統(tǒng)分析的故障診斷方法利用狀態(tài)空間描述建立機(jī)理模型, 可獲得理想的診斷和檢測結(jié)果, 但這類方法通常需要提前知道系統(tǒng)運(yùn)動(dòng)方程等信息, 對(duì)于軸承運(yùn)行來說, 這類信息通常不易獲知. 近年來, 深度神經(jīng)網(wǎng)絡(luò)已被成功應(yīng)用于早期故障特征自動(dòng)提取和識(shí)別, 可自適應(yīng)地提取信息豐富和判別能力強(qiáng)的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量輔助數(shù)據(jù)進(jìn)行模型訓(xùn)練, 而歷史采集的輔助數(shù)據(jù)與目標(biāo)對(duì)象數(shù)據(jù)可能存在較大不同, 直接訓(xùn)練并不能有效提升在線檢測的特征表示效果; 另一方面, 在訓(xùn)練過程中未能針對(duì)早期故障引發(fā)的狀態(tài)變化而有目的地強(qiáng)化相應(yīng)特征表示. 因此, 深度學(xué)習(xí)方法在早期故障在線監(jiān)測中的應(yīng)用仍存在較大的提升空間.不同類型的電機(jī)在結(jié)構(gòu)和工作原理上可能有很大差異,監(jiān)測系統(tǒng)需要根據(jù)具體電機(jī)的特性進(jìn)行定制。無錫電機(jī)監(jiān)測特點(diǎn)
電機(jī)狀態(tài)監(jiān)測和故障診斷技術(shù)是一種了解和掌握電機(jī)在使用過程中狀態(tài),確定其整體或局部正?;虍惓?,早期發(fā)現(xiàn)故障及其原因,并能預(yù)報(bào)故障發(fā)展趨勢(shì)的技術(shù),電機(jī)狀態(tài)監(jiān)測與故障診斷技術(shù)包括識(shí)別電機(jī)狀態(tài)監(jiān)測和預(yù)測發(fā)展趨勢(shì)兩方面。設(shè)備狀態(tài)是指設(shè)備運(yùn)行的工況,由設(shè)備運(yùn)行過程中的各種性能參數(shù)以及設(shè)備運(yùn)行過程中產(chǎn)生的二次效應(yīng)參數(shù)和產(chǎn)品質(zhì)量指標(biāo)參數(shù)來描述。設(shè)備狀態(tài)的類型包括:正常、異常和故障三種。設(shè)備狀態(tài)監(jiān)測是通過測定以上參數(shù),并進(jìn)行分析處理,根據(jù)分析處理結(jié)果判定設(shè)備狀態(tài)。對(duì)設(shè)備進(jìn)行定期或連續(xù)監(jiān)測,包括采用各種測試、分析判別方法,結(jié)合設(shè)備的歷史狀況和運(yùn)行條件,弄清設(shè)備的客觀狀態(tài),獲取設(shè)備性能發(fā)展的趨勢(shì)規(guī)律,為設(shè)備的性能評(píng)價(jià)、合理使用、安全運(yùn)行、故障診斷及設(shè)備自動(dòng)控制打下基礎(chǔ)。電機(jī)故障現(xiàn)代分析方法:基于信號(hào)變換的診斷方法電機(jī)設(shè)備的許多故障信息是以調(diào)制的形式存在于所監(jiān)測的電氣信號(hào)及振動(dòng)信號(hào)之中,借助于某種變換對(duì)這些信號(hào)進(jìn)行解調(diào)處理,就能方便地獲得故障特征信息,以確定電機(jī)設(shè)備所發(fā)生的故障類型。常用的信號(hào)變換方法有希爾伯特變換和小波變換。溫州混合動(dòng)力系統(tǒng)監(jiān)測電機(jī)監(jiān)測的主要內(nèi)容包括溫度、振動(dòng)、電流、聲音等方面。
在數(shù)控機(jī)床中,刀具的監(jiān)測對(duì)于確保加工質(zhì)量和提高生產(chǎn)效率至關(guān)重要。刀具監(jiān)測主要包括刀具磨損監(jiān)測和刀具狀態(tài)監(jiān)測。刀具磨損監(jiān)測可以通過多種方法實(shí)現(xiàn),其中一種常用的方法是利用傳感器監(jiān)測切削過程中的物理參數(shù)變化,如切削力、振動(dòng)和溫度等。當(dāng)?shù)毒吣p到一定程度時(shí),這些物理參數(shù)會(huì)發(fā)生變化,通過監(jiān)測這些變化可以間接判斷刀具的磨損情況。此外,還可以采用直接監(jiān)測方法,如使用光學(xué)或觸覺傳感器直接觀察刀具的磨損情況。除了刀具磨損監(jiān)測,刀具狀態(tài)監(jiān)測也是數(shù)控機(jī)床中的重要環(huán)節(jié)。刀具狀態(tài)監(jiān)測可以通過實(shí)時(shí)監(jiān)測刀具的振動(dòng)、聲音和溫度等參數(shù),結(jié)合數(shù)據(jù)驅(qū)動(dòng)的算法構(gòu)建刀具狀態(tài)與這些參數(shù)之間的映射關(guān)系,從而實(shí)現(xiàn)對(duì)刀具狀態(tài)的準(zhǔn)確監(jiān)測。這種方法可以幫助及時(shí)發(fā)現(xiàn)刀具的崩刃、破損和卷刃等失效形式,確保加工質(zhì)量和安全??傊?,數(shù)控機(jī)床中的刀具監(jiān)測技術(shù)對(duì)于提高加工質(zhì)量和生產(chǎn)效率具有重要意義。通過實(shí)時(shí)監(jiān)測刀具的磨損和狀態(tài),可以及時(shí)發(fā)現(xiàn)并處理潛在問題,確保加工過程的穩(wěn)定性和可靠性。
在預(yù)防性維護(hù)的應(yīng)用中,振動(dòng)是大型旋轉(zhuǎn)等設(shè)備即將發(fā)生故障的重要指標(biāo),一是由于在大型旋轉(zhuǎn)機(jī)械設(shè)備的所有故障中,振動(dòng)問題出現(xiàn)的概率比較高;第二,振動(dòng)信號(hào)包含了豐富的機(jī)械及運(yùn)行的狀態(tài)信息;第三,振動(dòng)信號(hào)易于拾取,便于在不影響機(jī)械運(yùn)行的情況下實(shí)行在線監(jiān)測和診斷。旋轉(zhuǎn)類設(shè)備的預(yù)防性維護(hù)需要重點(diǎn)監(jiān)控振動(dòng)量的變化。其預(yù)測性診斷技術(shù)對(duì)于制造業(yè)、風(fēng)電等的行業(yè)的運(yùn)維具有非常重大的意義。通過設(shè)備振動(dòng)等狀態(tài)的預(yù)測性維護(hù),可以及時(shí)發(fā)現(xiàn)并解決系統(tǒng)及零部件存在問題。但是對(duì)于一些不是因?yàn)樵O(shè)備問題而存在的固有振動(dòng),振動(dòng)強(qiáng)度的不必要增加會(huì)對(duì)部件產(chǎn)生有害的力,危及設(shè)備的使用壽命和質(zhì)量。在這種情況下,則需要采用振動(dòng)隔離技術(shù)來解決和干預(yù),有效抑制振動(dòng)和噪聲的危害,避免設(shè)備故障和流程關(guān)閉。在實(shí)際工業(yè)環(huán)境中,存在許多環(huán)境噪聲,可能干擾電機(jī)監(jiān)測系統(tǒng)的信號(hào)。需要采用高度靈敏的傳感器和濾波技術(shù)。
電機(jī)的振動(dòng)監(jiān)測是評(píng)估電機(jī)運(yùn)行狀態(tài)的重要手段。電機(jī)振動(dòng)可能是由于多種原因引起的,如軸承損壞、不平衡、軸向偏移、電機(jī)定子或轉(zhuǎn)子損傷等。為了監(jiān)測電機(jī)的健康情況,可以采用振動(dòng)監(jiān)測技術(shù)。振動(dòng)監(jiān)測通常通過安裝振動(dòng)傳感器在電機(jī)上實(shí)現(xiàn),這些傳感器可以實(shí)時(shí)監(jiān)測電機(jī)的振動(dòng)情況。如果振動(dòng)超過正常范圍,系統(tǒng)可以發(fā)出警報(bào)并停機(jī),以防止設(shè)備損壞。此外,振動(dòng)監(jiān)測還可以提供關(guān)于電機(jī)運(yùn)行狀態(tài)的詳細(xì)信息,幫助工程師進(jìn)行故障診斷和預(yù)測性維護(hù)。除了振動(dòng)監(jiān)測,還可以結(jié)合其他監(jiān)測技術(shù),如溫度監(jiān)測、潤滑油監(jiān)測、電流監(jiān)測和聲音監(jiān)測等,來更好地評(píng)估電機(jī)的運(yùn)行狀態(tài)。這些技術(shù)可以相互補(bǔ)充,提供更好的故障診斷和預(yù)測性維護(hù)信息??傊?,電機(jī)的振動(dòng)監(jiān)測是確保電機(jī)正常運(yùn)行和延長其使用壽命的關(guān)鍵技術(shù)之一。通過實(shí)時(shí)監(jiān)測和分析電機(jī)的振動(dòng)情況,可以及時(shí)發(fā)現(xiàn)并處理潛在問題,提高設(shè)備的可靠性和生產(chǎn)效率。盈蓓德智能科技專注監(jiān)測系統(tǒng),秉承著專心、專注、專研的態(tài)度,力爭做好每一套系統(tǒng),服務(wù)好每一位客戶。紹興功能監(jiān)測控制策略
先進(jìn)的電機(jī)監(jiān)測技術(shù),如基于數(shù)學(xué)模型和人工智能的故障診斷方法,可以實(shí)現(xiàn)對(duì)電機(jī)狀態(tài)的精確估計(jì)和預(yù)測。。無錫電機(jī)監(jiān)測特點(diǎn)
基于數(shù)據(jù)的故障檢測與診斷方法能夠?qū)A康墓I(yè)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析和特征提取,將系統(tǒng)的狀態(tài)分為正常運(yùn)行狀態(tài)和故障狀態(tài)。故障檢測是判斷系統(tǒng)是否處于預(yù)期的正常運(yùn)行狀態(tài),判斷系統(tǒng)是否發(fā)生異常故障,相當(dāng)于一個(gè)二分類任務(wù)。故障診斷是在確定發(fā)生故障的時(shí)候判斷系統(tǒng)處于哪一種故障狀態(tài),相當(dāng)于一個(gè)多分類任務(wù)。因此,故障檢測和診斷技術(shù)研究類似于模式識(shí)別,分為4個(gè)的步驟:數(shù)據(jù)獲取、特征提取、特征選擇和特征分類。1)數(shù)據(jù)獲取步驟是從過程系統(tǒng)收集可能影響過程狀態(tài)的信號(hào),包括溫度、流量等過程變量;2)特征提取步驟是將采集的原始信號(hào)映射為有辨識(shí)度的狀態(tài)信息;3)特征選擇步驟是將與狀態(tài)變化相關(guān)的變量提取出來;4)特征分類步驟是通過算法將前幾步中選擇的特征進(jìn)行故障檢測與診斷。在大數(shù)據(jù)這一背景下,傳統(tǒng)的基于數(shù)據(jù)的故障檢測與診斷方法被廣泛應(yīng)用,但是,這些方法有一些共同的缺點(diǎn):特征提取需要大量的知識(shí)和信號(hào)處理技術(shù),并且對(duì)于不同的任務(wù),沒有統(tǒng)一的程序來完成。此外,常規(guī)的基于機(jī)器學(xué)習(xí)的方法結(jié)構(gòu)較淺,在提取信號(hào)的高維非線性關(guān)系方面能力有限。無錫電機(jī)監(jiān)測特點(diǎn)